Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2212802119, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454748

RESUMO

Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.

2.
Chem Rev ; 122(15): 13043-13107, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839290

RESUMO

Chemomechanics is an old subject, yet its importance has been revived in rechargeable batteries where the mechanical energy and damage associated with redox reactions can significantly affect both the thermodynamics and rates of key electrochemical processes. Thanks to the push for clean energy and advances in characterization capabilities, significant research efforts in the last two decades have brought about a leap forward in understanding the intricate chemomechanical interactions regulating battery performance. Going forward, it is necessary to consolidate scattered ideas in the literature into a structured framework for future efforts across multidisciplinary fields. This review sets out to distill and structure what the authors consider to be significant recent developments on the study of chemomechanics of rechargeable batteries in a concise and accessible format to the audiences of different backgrounds in electrochemistry, materials, and mechanics. Importantly, we review the significance of chemomechanics in the context of battery performance, as well as its mechanistic understanding by combining electrochemical, materials, and mechanical perspectives. We discuss the coupling between the elements of electrochemistry and mechanics, key experimental and modeling tools from the small to large scales, and design considerations. Lastly, we provide our perspective on ongoing challenges and opportunities ranging from quantifying mechanical degradation in batteries to manufacturing battery materials and developing cyclic protocols to improve the mechanical resilience.


Assuntos
Fontes de Energia Elétrica , Termodinâmica
3.
Nat Commun ; 11(1): 4433, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895388

RESUMO

Surface lattice reconstruction is commonly observed in nickel-rich layered oxide battery cathode materials, causing unsatisfactory high-voltage cycling performance. However, the interplay of the surface chemistry and the bulk microstructure remains largely unexplored due to the intrinsic structural complexity and the lack of integrated diagnostic tools for a thorough investigation at complementary length scales. Herein, by combining nano-resolution X-ray probes in both soft and hard X-ray regimes, we demonstrate correlative surface chemical mapping and bulk microstructure imaging over a single charged LiNi0.8Mn0.1Co0.1O2 (NMC811) secondary particle. We reveal that the sub-particle regions with more micro cracks are associated with more severe surface degradation. A mechanism of mutual modulation between the surface chemistry and the bulk microstructure is formulated based on our experimental observations and finite element modeling. Such a surface-to-bulk reaction coupling effect is fundamentally important for the design of the next generation battery cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...